EVAPORITE DEPOSITION and DOLOMITIZATION in a DYNAMIC LACUSTRINE SETTING, GREEN RIVER FORMATION (EOCENE), PICEANCE/UNITA BASINS, COLORADO/UTAH, USA

Rick Sarg

Suriamin, Mike Swierenga, Katie Logan

Kati Tänavsuu-Milkeviciene

Colorado School of Mines

Golden, Colorado, USA

The Green River Lake System

- Deposition during and immediately after *Eocene climate optimum* (~54-44 Ma). Mid-latitudes and continental interior intermountain setting. Period of slow subsidence. Climate varied from arid to humid.
- Perennial, varyingly stratified lakes with fluctuating lake levels. Each basin has a unique history, but basins connected at times during their history. Stable isotopes co-vary suggesting closed lake system.
- Lakes alkaline, high in Na and HCO3. Evaporite minerals include primary dawsonite, nahcolite, trona, and halite. Precipitation occurs in shallow water, at chemocline, and within bottom sediment.
- Dolomite occurs as (1) early replacement of lakemargin lime sediments, and (2) in sublittoralprofundal oil shale (replacement or direct precipitate?)
- Preservation of *high amounts of organic matter* in lake center mud rocks suggests dysoxic to anoxic bottom waters. Microbial mediation of dolomitization?

Eocene (50 Ma)

World's largest known oil shale resources occur in: lake sediments of Green River Formation Western Colorado, Utah, & Wyoming

- Each basin has a unique history
- Major basins connected at times during history
- All have periods of evaporite deposition

Green River Paleogeography

Stratigraphy

- Duration: *Eocene Optimum*
- Piceance basin (~54 to ~48 Ma)
- Uinta basin (~54 to ~44 Ma)
- Divided into:
 - 1. Members, based on lithofacies
 - 2. Rich and lean zones (R/L), based on kerogen content

Alluvial, deltaic, and turbidite depositsDominantly oil shale depositsDominantly mixed littoral to sublittoral carbonates and siliciclasticsAlluvial deposits

Modified after Vanden Berg 2008; Self et al. 2010; Tänavsuu-Milkeviciene and Sarg 2012

Eocene Climate & Lake Uinta

Age data after Smith et al. 2008, 2010

EECO – Early Eocene Climatic Optimum

Green River Lake Waters: Brine Evolution and Chemical Divides

Green River Inflow Waters: Low temperature chemical weathering: Minerals + dissolved atmospheric CO_2 produce ions Na, Ca, Mg, K, Cl HCO₃, SO₄ which then form chemical sediments in closed basin lakes.

$HCO_3 + CO_3 > Ca$

 $CaCO_3$ Precipitation, use up Ca, Mg; extra $HCO_3 + CO_3$ forms alkaline (pH 9-10) brines.

> Precipitation of Na-carbonates, i.e., dawsonite, nahcolite, trona, and halite

Accelerated chemical weathering with elevated atmospheric CO₂ in the Eocene (Smith et al., 2008)

Lake Stable Isotopes Co-vary A Closed System

Incr. Evap. -**Higher Salinity** Incr. Inflow -

Incr. Inflow -Freshening

> Incr. Photosyn. – High Productivity

Incr. CO2 uptake - Oxic

> Shoreline intraclastic mud deposits
> Carbonate shoal deposits
> Microbial carbonates
> Delta deposits
> Littoral, sublittoral siliciclastics
> Littoral, sublittoral oil shale
> Profundal laminated oil shale
> Profundal oil shale breccia

- Higher frequency compared with marine systems.
- Prone to rapid fluctuations caused by the combination of autocyclic and allocyclic changes.

Lake Depositional System

Sequence Stratigraphy and Climate

• Deepening-upward cycles

• Cyclicity is controlled by runoff and vegetation

Depositional Model - Lake Stages

Delta

Littoral, sublittoral siliciclastics Littoral, sublittoral oil shale Stage 6. Closing lake

Stage 5. High lake

Stage 4. Rising lake

- Stage 3. Highly fluctuating lake
- Stage 2. Transitional lake
- Stage 1. Fresh lake

Laminated oil shale

- Softs ediment deformed oil shale
- Oil shale breccia

Turbidites Nacholite dominated evaporites Halite dominated evaporites

Green River Fm. Deep Lake Center Evaporites

Green River Fm. Deep Lake Center Evaporites

(G) Halite bottom growth and halite to nahcolite laminites

(F) Evaporite breccia - debrite

(H) Nahcolitenodules &crystals onbedding plane

Tänavsuu-Milkeviciene and Sarg, 2013, in press

Arid climate \rightarrow Low runoff \rightarrow Low lake level *Perennial Stratified Saline Lake*

Evaporites (halite, nahcolite)

Dolomite and the Lake

Two Groups: 1) The Lakeshore 2) The Offshore Lake

Littoral Microbialite Deposits

Thrombolite Microtexture

- A. Dolomitic thrombolite
- B. Arborescent dolomitized thrombolite
- C. Calcitic thrombolite with interstitial mud
- D. Calcitic thrombolite
- E. Partially dolomitized thrombolite clots
- F. Fully dolomitized thrombolite

Lakeshore Shallowing Upward Cycles – Mudstones to Grainstones

QEMSCAN images of Littoral-Sublittoral Mudrocks

Mi

neral Name Area Pere	ent	
Quartz	0.23	- 1 / s
Biotite/Phlogopite	0.00	a la fer
Illite	0.01	100
Illite-Smectite	0.00	Sal.
Smectite	0.00	218
Chlorite	0.01	and the second
Muscovite/Kaolinite	0.00	8.8
Plagioclase	0.01	ALC: N
K-feldspar	0.01	10 North
Calcite	9.71	
Calcite (Mg-Bearing)	23.54	The State
Dolomite	66.02	Carlos A
Fe Oxide/Hydroxide	0.23	New C
Apatite	0.04	ALC: NO
Other Minerals	0.02	1
Others	0.17	1
	1	
		D

Lakeshore Stable Isotopes -Dolomite & Calcite

Offshore Lake Stable Isotopes – Dolomite & Calcite

from Pitman, 1996

The Green River Lake System

- Deposition during and immediately after *Eocene climate optimum* (~54-44 Ma). Mid-latitudes and continental interior intermountain setting. Period of slow subsidence. Climate varied from arid to humid.
- Perennial, varyingly stratified lakes with fluctuating lake levels. Each basin has a unique history, but basins connected at times during their history. Stable isotopes co-vary suggesting closed lake system.
- Lakes alkaline, high in Na and HCO3. Evaporite minerals include primary dawsonite, nahcolite, trona, and halite. Precipitation occurs in shallow water, at chemocline, and within bottom sediment.
- Dolomite occurs as (1) early replacement of lakemargin lime sediments, and (2) in sublittoralprofundal oil shale (replacement or direct precipitate?)
- Preservation of *high amounts of organic matter* in lake center mud rocks suggests dysoxic to anoxic bottom waters. Microbial mediation of dolomitization?

Littoral-Sublittoral Mudrocks and Grainstones

- A) ostracod dolomitic mudstone-wackestone;
- B) ostracod lime packstone-grainstone, brown-green peloids are dolomitized;
- C) molluscan lime dolomitic wackestone-packstone, mud is dolomitic & bioclasts are calcite;
- D) Laminated dolomitic oil shale

Black scale bar is 0.40 mm.

Stromatolite Microtextures

- A. Fine-grained stromatolite with alternating dolomite and calcite lamina
- B. Columnar stromatolite with dolomitized outer coating
- **C. Dendrolite layer**
- D. Agglutinated stromatolite with alternating dolomite and calcite lamina
- E. Agglutinated stromatolite with dolomite and calcite lamina
- F. Agglutinated stromatolite with irregular laminations

Dolomudstone Porosity

Redox Conditions for Ferroan Dolomite

a (ankerite) = 0.1; [Fe(II) aq] = 10⁻⁴ Inorganic C conc. = 10^{-2.7} Grosz et al. (2006) Geofluids 6, 137-153